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(2II) is a pair of vertical transitions, one to the ground state of 
NH (3S-) and the other to the excited singlet state, 1A. The 
extended Franck-Condon contour in our photodetachment spectra 
with excitation of ring-breathing modes implies that the ground 
state of the C6H5N" ion is X 2B2 and that much of the charge 
is delocalized from the N atom onto the phenyl ring. This contrasts 
with the A 2B1 ion which localizes the extra electron in the b2, 
nonbonding orbital, on the N atom. Preliminary UHF calcula­
tions10 on both states of the C6H5N" ion in a 6-311++G** basis 
lead to the 2B2 state being stabilized by about 10 kcal/mol below 
the 2B1 state. Figure 3 is a symbolic drawing which contrasts the 
electronic states of NH with those of C6H5N. 
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NodRm-IV (S) (1) and NodRm-IV (Ac1S) (2) are sulfated 
lipooligosaccharides of N-acetyl-D-glucosamine secreted by the 
microorganism Rhizobium meliloti .1^ These remarkably specific 
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Scheme I. Structures and Retrosynthetic Disconnections of 
NodRm-IV Factors (1-4) 
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compounds play a crucial role in the Rhizobium-legume symbiosis 
by eliciting the formation of nitrogen-fixing root nodules and root 
hair deformation on alfalfa but not on vetch. Interestingly, the 
non-sulfated compounds NodRm-IV (Ac) (3) and NodRm-IV 
(4) elicit the same organogenesis and root morphology on vetch 
but not on alfalfa.5,6 Experiments with mutant strains of R. 
meliloti identified the genes responsible for the sulfation of these 
lipooligosaccharides.7 The important actions of these molecules 
coupled with their fascinating specificity, natural scarcity, and 
challenging molecular structures prompted us to target them for 
chemical synthesis. Herein we report the first total synthesis of 
these substances (1-4) in their naturally occurring forms. 

Despite their repetitive nature in glucosamine units, the 
structures of NodRm-IV factors (1-4) are synthetically quite 
challenging due to the presence of unsaturation, nitrogen, and 
sulfur. This variety of functional groups required a carefully 
designed and executed strategy. Scheme I presents the retro-
synthetic analysis on which the synthesis was based. Thus, dis­
connections at the indicated bonds led to key building blocks 5-8. 
The projected construction called for an a, b, c, d sequence of 
coupling reactions and selective deblocking of hydroxyl groups. 

Coupling of glucosamine derivative 5 with glycosyl fluoride 6 
under the Mukaiyama-Suzuki8 conditions led to disaccharide 9 
with a /3-glycoside linkage as expected from the directing effect 
of the V-phthalimido group (Scheme II). Liberation of the 4'-OH 
group followed by attachment of a second glucosamine unit 6 as 
above resulted in the stereospecific formation of trisaccharide 11. 
Having performed their function as activating and /3-directing 
groups, the phthalimide moieties were removed with hydrazine, 
leading to the triamine 12, which was acetylated to afford the 
triacetamide 13. Introduction of the final glucosamine unit was 
accomplished using derivative 7 and the above mentioned con­
ditions, furnishing tetrasaccharide 14 stereoselectively. Generation 
of the free amine functionality from 14 as described above allowed 
the incorporation of the unsaturated fatty acid chain 8 through 
intermediate 15 and the action of 2-chloro-l-methylpyridinium 
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Scheme II. Total Synthesis of NodRm-IV Factors" 
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"Reagents and conditions: (a) 1.0 equiv of 5, 1.75 equiv of 6, 5.0 
equiv of AgOTf, 5.0 equiv of Cp2ZrCl2, 1.0 equiv of 2,6-di-rm-butyl-
4-methylpyridine, 4-A molecular sieves, CH2Cl2, 0-25 0C, 16 h, 56% 
(plus 36% recovered 5); (b) 1.0 equiv of K2CO3, MeOH-THF (1:1), 
25 0 C, 2 h, 90%; (c) 2.0 equiv of 6, 5.0 equiv of AgOTf, 5.0 equiv of 
Cp2HfCl2, 1.0 equiv of 2,6-di-2erf-butyl-4-methylpyridine, 4-A molec­
ular sieves, CH2Cl2, 0-25 0 C, 16 h, 60% (plus 37% recovered 10); (d) 
excess of hydrazine hydrate, EtOH-benzene (20:1), 100 0C, 16 h; (e) 
excess of Ac2O, MeOH-CH2Cl2 (1:1), 25 0 C, 30 min, 72% for two 
steps; (0 5.0 equiv of 7, 5.0 equiv of AgOTf, 5.0 equiv of Cp2HfCl2, 
0.2 equiv of 2,6-di-fe»-f-butyl-4-methylpyridine, 4-A molecular sieves, 
CH2Cl2, 25 0C, 16 h, 50% (plus 25% recovered 13); (g) excess of hy­
drazine hydrate, EtOH, 100 0C, 6 h, 87%; (h) 3.0 equiv of 8, 3.0 equiv 
of 2-chloro-l-methylpyridinium iodide, 3.3 equiv of Et3N, MeCN, 25 
°C, 2 h, 73%; (i) 1.3 equiv of pyridinium />-toluenesulfonate, EtOH, 25 
0C, 16 h; (j) 1.5 equiv of Ac2O, 1.1 equiv of Et3N, DMAP (cat.), 
CH2Cl2, 25 0C, 10 min, 72% for two steps; (k) 3.0 equiv of TBAF, 
THF, 25 0 C, 1.5 h, 88%; (1) excess OfSO3-NMe3, pyridine, 25 0C, 1 h, 
85%; (m) 20.0 equiv of eerie ammonium nitrate (CAN), MeCN-H2O 
(4:1), 25 0C, 1 h, 30%; (n) excess of NaOMe, MeOH, 25 0C, 3 h, 
75%. 

iodide.9 Selective removal of the ferf-butyldimethylsilyl group 
from compound 16 proceeded smoothly on exposure to PPTS 1 0 

to afford 17. Acetylation of 17 followed by desilylation with 
"Bu4NF gave compound 19. Sequential deprotection of 19 with 
eerie ammonium nitrate (CAN) and N a O M e led to the targeted 
NodRm-IV (Ac) ( 3 ) " and NodRm-IV (4), respectively. Al-

(9) Sutherland, J. K.; Widdowson, P. A. J. Chem. Soc. 1964, 4650. 
(10) Prakash, C; Sateh, S.; Blair, I. A. Tetrahedron Lett. 1989, 30, 19. 
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by 1H NMR spectroscopy prior to HPLC purification. This compound was 
spontaneously converted to the final product upon HPLC processing. 

ternatively, sulfation of 19 with SO3-NMe3 and ion exchange 
(Na+) gave compound 20. Sequential deprotection of 20 under 
the above conditions gave NodRm-IV (Ac1S) (2)" and NodRm-
IV (S) (1). Final products 1-4 were purified by reverse-phase 
HPLC as described in the supplementary material. 

The described chemistry renders these scarce bioactive com­
pounds readily available for further biological studies. Molecular 
design and structure-activity studies are also now feasible, and 
so is the isolation of the receptors of these compounds. 
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Suggestions regarding the relationship of cofactor conformation 
to stereospecificity1 and to rates2 of dehydrogenase enzymes have 
emerged. Our objectives have been to evaluate the potential 
energies of ground-state conformations and their influence on 
reaction trajectories and the structures of transition states. To 
assess the importance of conformational features, we have em­
ployed semiempirical (AMI)3 and molecular dynamics 
(CHARMm)4 calculations using single-crystal X-ray structures 
of both nicotinamides and 1,4-dihydronicotinamides5 and de­
hydrogenase enzymes.6 The virtual angles Xn, Xim, ac, and c*N 
define the conformations of interest (Charts I and II). 
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